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It is common for dispersion curves of damped periodic materials to be based on real 
frequencies as a function of complex wavenumbers or, conversely, real wavenumbers as 
a function of complex frequencies. The former condition corresponds to harmonic wave 
motion where a driving frequency is prescribed and where attenuation due to dissipation 
takes place only in space alongside spatial attenuation due to Bragg scattering. The latter 
condition, on the other hand, relates to free wave motion admitting attenuation due to 
energy loss only in time while spatial attenuation due to Bragg scattering also takes 
place. Here, we develop an algorithm for 1D systems that provides dispersion curves for 
damped free wave motion based on frequencies and wavenumbers that are permitted to 
be simultaneously complex. This represents a generalized application of Bloch’s theorem 
and produces a dispersion band structure that fully describes all attenuation mechanisms, 
in space and in time. The algorithm is applied to a viscously damped mass-in-mass 
metamaterial exhibiting local resonance. A frequency-dependent effective mass for this 
damped infinite chain is also obtained.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les courbes de dispersion des matériaux périodiques amortis sont habituellement basées 
soit sur des fréquences réelles en fonction de nombres d’onde complexes, soit sur des 
nombres d’onde réels en fonction de fréquences complexes. Le premier cas correspond à 
la propagation d’ondes harmoniques, dont la fréquence d’excitation est imposée, et dont 
l’atténuation due à la dissipation survient uniquement dans l’espace, en même temps que 
l’atténuation spatiale due à la diffraction de Bragg. Le second cas concerne la propagation 
d’ondes libres dont l’atténuation est due à une perte d’énergie dans le temps, en plus de 
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l’atténuation spatiale causée par la diffraction de Bragg. Dans cet article, nous développons 
un algorithme pour des systèmes unidimensionnels afin d’obtenir—pour le mouvement 
d’ondes libres amorties—les courbes de dispersion fondées sur des fréquences et des 
nombres d’onde qui sont autorisés à être simultanément complexes. Cette application 
généralisée du théorème de Bloch fournit une structure de bandes qui décrit pleinement 
tous les mécanismes d’atténuation, dans l’espace comme dans le temps. L’algorithme est 
appliqué à un metamatériau à résonance locale (masse incluse dans une masse) amorti 
de façon visqueuse. Une masse effective dépendant de la fréquence est également obtenue 
pour cette chaine infinie amortie.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Phononic materials have been attracting much attention in the materials physics and engineering communities because 
of their rich scope of acoustic and elastodynamic properties [1–5]. There are two classes of phononic materials: phononic 
crystals [6,7] and locally resonant acoustic/elastic metamaterials [8]. Phononic crystals resemble atomic-scale crystals in 
that they consist of repeated units in space. The dispersion curves for elastic wave propagation in a phononic crystal, or 
a periodic material in general, appear in bands and in some cases band gaps may arise. Bragg scattering is the prime 
band-gap opening mechanism in a phononic crystal. Metamaterials are usually also periodic, although not by necessity. The 
prefix meta- (meaning “beyond”) is associated with the notion that through deliberate design of the internal structure, these 
materials manifest unusual properties that exceed those of conventional composites and phononic crystals. In the context 
of wave propagation, local resonances are generally the key feature in metamaterials leading to salient properties such as 
subwavelength band gaps [9–12], negative effective material properties [13–16], enhanced dissipation [17–19], and thermal 
conductivity reduction [20], among others.

At present, much of the phenomena of wave propagation in phononic materials is understood from the perspective of 
conservative linear elasticity. Realizing their full potential, however, requires an account of energy dissipation from damping. 
Already, metamaterials possessing internal resonating bodies have been shown to demonstrate enhanced dissipation under 
certain conditions (i.e., beyond which may be attributed to the sum of the individual material constituents) [17–19]. This 
property is beneficial where enhanced dissipation in a structure is needed but without appearing at the expense of stiffness. 
There are numerous avenues for the treatment of damping in material or structural models, including those representing 
phononic materials. A common approach is to consider viscous damping, for which a simple version is known as Rayleigh 
[21], or proportional, damping—whereby the matrix of damping coefficients is assumed to be proportional to the mass 
and/or stiffness matrices [22–24]. If the proportionality condition is not met, then the model is described as generally 
damped [25,26]. Experiments are used to determine an appropriate damping model for a given material or structure [27].

Beyond the choice of the damping model, an important consideration is whether the frequency or the wavenumber 
is selected to be real and, consequently, which is permitted to be complex. There are two classes of problems dealing 
with damped phononic materials. In one class, the frequencies are assumed a priori to be real thus allowing the effects of 
damping to manifest only in the form of complex wavenumbers. Physically, this represents a medium experiencing wave 
propagation due to a sustained driving frequency and dissipation taking effect in the form of spatial attenuation only. This 
approach follows a κ = κ(ω) formulation (where κ and ω denote wavenumber and frequency, respectively) resulting from 
either a linear [28–33] or a quadratic [34–36] eigenvalue problem (EVP). In the other class, the frequencies are permitted 
to be complex thus allowing dissipation to take effect in the form of temporal attenuation. Physically, this represents a 
medium admitting free dissipative wave motion, e.g., due to impulse loading. Here, a ω = ω(κ) formulation leading to a 
linear EVP is the common route (in some cases with the aid of a state-space transformation); see Refs. [37–41,33].

In the ‘driven waves’ path, a real frequency is prescribed and the underlying EVP is solved for a corresponding pair of real 
and imaginary wavenumbers, representing propagation and attenuation constants, respectively. All modes are described by 
complex wavenumbers due to the dissipation. In the ‘free waves’ path, on the other hand, a real wavenumber is specified, 
and complex frequencies emerge as the solution (the real and imaginary parts respectively provide the loss factor and 
the frequency for each mode). Because of the common association of the driven waves problem to an EVP for which the 
frequency is the independent variable and, in contrast, the free waves problem to an EVP for which the wavenumber is the 
independent variable, it is often viewed that the two only available options are: real frequencies and complex wavenumbers 
versus real wavenumbers and complex frequencies [42–44]. However, if the medium permits spatial attenuation in its 
undamped state—which is the case for phononic materials within band-gap frequencies—then, in principle, there should 
be an imaginary wavenumber component (in addition to the real wavenumber component) even when the frequencies are 
complex. This, in fact, represents a more complete picture of the dispersion curves for damped free wave motion in media 
that contain inherent mechanisms for spatial attenuation, such as Bragg scattering and local resonance. Since this scenario 
pertains only to free waves, one expects to see complex frequencies for bands admitting only spatial propagation as well 
as bands admitting evanescent waves (with the real part of the wavenumber being either zero or π divided by the lattice 
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Fig. 1. One-dimensional, discrete unit cell for a periodic material with lattice spacing a: (a) 2-DOF acoustic/elastic metamaterial; (b) equivalent 1-DOF 
material.

spacing—the two values that represent the limits of the irreducible Brillouin zone). For a proportionally damped problem, 
a solution that permits both the frequencies and wavenumbers to be complex has been obtained using the transfer matrix 
method which gives a κ = κ(ω) linear EVP [45]. For a generally damped problem, however, an all-complex solution cannot 
be obtained from a linear EVP, nor from directly solving a quadratic EVP.

In this paper, we consider damped free motion in 1D systems and provide an algorithm—based on a quadratic EVP—
that provides the dispersion curves and damping ratio constants for both spatially propagating and attenuating waves. As 
an example, we focus on a viscously damped mass-in-mass chain representing a locally resonant acoustic/elastic meta-
material [46]. With a complex wavenumbers-complex frequencies band structure at hand, we also compute a frequency-
dependent effective mass. In the absence of dissipation, this effective mass is real and negative in the region of the band 
gap. As damping alters the dispersion characteristics, we observe the effective mass to transition to complex form and its 
region of negativity diminishes as the intensity of the damping increases.

2. Theory: dispersion relations

We consider a nested 1D lumped parameter mass-spring-dashpot model similar to what is investigated in Ref. [46]. Infi-
nite in extent, a model of a locally resonant acoustic/elastic metamaterial is constructed by appending copies ad infinitum of 
the unit cell depicted in Fig. 1a along the line of motion. Prior to application of boundary conditions, there are three degrees 
of freedom (DOF) in this unit cell with uL, u1, and u2 denoting the displacement of the left and right cell boundaries and 
an internal DOF, respectively. Each of these have an associated mass: mL = 0, m1, and m2. On the boundaries, the forces fL
and f1 apply. Springs with stiffness k and dashpots with viscosity c connect the DOFs.

Balancing all dynamic forces, the motion of each DOF in Fig. 1a is described by the following equations:

m1ü1 + (c1 + c2)u̇1 − c2u̇2 − c1u̇L + (k1 + k2)u1 − k2u2 − k1uL = f1 (1a)

m2ü2 − c2(u̇1 − u̇2) − k2(u1 − u2) = 0 (1b)

mLüL − c1(u̇1 − u̇L) − k1(u1 − uL) = fL (1c)

Together, Eqs. (1) may be assembled into a system of equations

Mü + Cu̇ + Ku = f (2)
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where M, C, and K are the assembled mass, damping, and stiffness matrices, respectively. Collecting and arranging the nodal 
displacements uT = [u1 u2 uL] and forces fT = [ f1 0 fL], allows the mass, damping, and stiffness matrices to be defined as 
follows:

M = m2Mr = m2

⎡
⎣1/rm 0 0

0 1 0
0 0 0

⎤
⎦ (3a)

C = c2Cr = c2

⎡
⎣1/rc + 1 −1 −1/rc

−1 1 0
−1/rc 0 1/rc

⎤
⎦ (3b)

K = k2Kr = k2

⎡
⎣1/rk + 1 −1 −1/rk

−1 1 0
−1/rk 0 1/rk

⎤
⎦ (3c)

where we utilize the ratios rm = m2/m1, rc = c2/c1, and rk = k2/k1 to write the matrices in terms of the resonator parame-
ters. Dividing by m2, the system in Eq. (2) is written as

Mrü + βCru̇ + ω2
0Kru = f/m2 (4)

where β = c2/m2 is a measure of damping intensity (which varies with c2,) and ω2
0 = k2/m2 is the square of the resonance 

frequency.
In the periodic material, uL is tied to u1 of the previous unit cell; likewise, u1 is tied to uL of the subsequent unit cell. For 

the material to support Bloch wave propagation, the displacements at the boundaries are related according to uL = e−iκau1. 
If we define the essential set of displacements as ūT = [ub ui] (ub gathers the essential boundary displacements and ui
collects all the internal displacements), then the complete set of displacements may be written in terms of ū and the 
translational operator T as follows:

u = Tū (5)

Given ub = u1 and ui = u2,

T =
⎡
⎣ 1 0

0 1
γ 0

⎤
⎦ , γ = e−iκa (6)

The Bloch boundary condition is applied via the matrix T. Substituting Eq. (5) into Eq. (4) and premultiplying by T∗ (the 
conjugate transpose of T), we arrive at

M̄r ¨̄u + βC̄r ˙̄u + ω2
0K̄rū = 0 (7)

where

M̄r = T∗MrT (8a)

C̄r = T∗CrT (8b)

K̄r = T∗KrT (8c)

Equilibrium in the region between unit cells leads to T∗f = 0 [47]. For general wave motion, a displacement solution takes 
the form ū = ũeλt . For driven waves, λ = −iω, while for free waves, λ is generally complex and yet to be determined. 
Applying this solution form to Eq. (7) yields

(λ2M̄r + λβC̄r + ω2
0K̄r)ũ = 0 (9)

which, upon simplification, gives the following quadratic matrix relationship for a non-trivial solution:

λ2A + λB + I = 0 (10)

where A = (1/ω2
0)K̄−1

r M̄r and B = (β/ω2
0)K̄−1

r C̄r. This formulation may proceed along two paths resulting in either general-
ized frequency solutions, λ(κ), or generalized wavenumber solutions, κ(λ).
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2.1. Frequency solutions from linear eigenvalue problem

In the case of a prescribed, real-valued wavenumber, the matrices in Eq. (7) are written explicitly as follows:

M̄r =
[

1/rm 0
0 1

]
(11a)

C̄r =
[

2(1 − cosκa)/rc + 1 −1
−1 1

]
(11b)

K̄r =
[

2(1 − cosκa)/rk + 1 −1
−1 1

]
(11c)

In general, C̄r is not simultaneously diagonalizable with M̄r and/or K̄r [21] except if specific conditions are met to 
allow for a Rayleigh damping model [22–24]. Reference [39] has conveniently considered the Rayleigh damping scenario 
and demonstrated that dissipation, especially when intense, can generate unique phenomena in the band structure such 
as branch overtaking and wavenumber cut-offs and cut-ons. Additional analysis on the effects of damping on the band 
structure, including in generally damped models, is offered in Ref. [41].

Presently, Eq. (9) represents a nonlinear eigenvalue problem. In order to recover a linear form, we first apply a state-space 
transformation to Eq. (7) [40]

[
0 M̄r

M̄r βC̄r

]
˙̄y +

[−M̄r 0
0 ω2

0K̄r

]
ȳ = 0 (12)

where ȳT = [ ˙̄u ū]. Assuming a state-space solution y = ỹeλt , where ỹ is a complex wave amplitude vector, we formulate the 
following generalized linear eigenvalue problem in λ:

([
0 M̄r

M̄r βC̄r

]
λ +

[−M̄r 0
0 ω2

0K̄r

])
ỹ = 0 (13)

The associated characteristic equation takes the form

λ4 + aλ3 + bλ2 + cλ + d = 0 (14)

where

a = β[rc(1 + rm) + 2rm(1 − cosκa)]
rc

(15a)

b = rcrkω
2
0(1 + rm) + 2rm(1 − cosκa)(rkβ

2 + rcω
2
0)

rcrk
(15b)

c = 2rmβω2
0(rc + rk)(1 − cosκa)

rcrk
(15c)

d = 2rmω4
0(1 − cosκa)

rk
(15d)

In general, the s = 1, n solutions to Eq. (14) (where s is the mode number and n is equal to the number of DOF) are complex 
and take the form

λs(κ) = −ξs(κ)ωr,s(κ) ± iωd,s(κ) (16)

Specifically, ωd(κ) is the damped wave frequency and ξ(κ)ωr(κ) is the temporal rate of decay of the wave amplitude. The 
quantity ξ(κ) is the dimensionless damping ratio (loss factor) and ωr(κ) is referred to as the “resonant frequency”. Explicitly, 
retaining the solutions for which Im[λs] ≥ 0, the damped frequency relation for branch s in the dispersion diagram is

ωd,s(κ) = Im[λs(κ)] (17)

and the complementary wavenumber-dependent damping ratio relation is

ξs(κ) = −Re[λs(κ)]
|λs(κ)| (18)
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2.2. Wavenumber solutions from quadratic eigenvalue problem

The preceding linear eigenvalue formulation is applicable only for prescribed, real-valued wavenumbers, κ = κR. In gen-
eral, however, the wavenumber is complex regardless if we are considering driven waves or free waves, as explained in 
Section 1. The wavenumber in complex form is expressed as κ = κR + iκI , with κR representing the wave spatial oscillation 
and κI representing the spatial amplitude decay. In order to determine these quantities for a wave of a given frequency, λ, 
the problem must be reformulated to deliver wavenumber solutions in exchange.

In Eq. (9), we leave the value of the wavenumber (and, therefore, γ ) to be determined. Taking the determinate of the 
coefficient matrix in Eq. (9), the characteristic equation in γ takes the following quadratic form:

Âγ 2 + B̂γ + 1 = 0 (19)

where Â = 1, B̂ = B̂1/B̂2 and

B̂1 = λ4

rm
+ (2 + rc)rm + rc

rmrc
βλ3 +

(
2
β2

rc
+ (2 + rk)rm + rk

rmrk
ω2

0

)
λ2

+ 2(rc + rk)βω2
0

rcrk
λ + 2

ω4
0

rk
(20a)

B̂2 = −[λ(β + λ) + ω2
0](rkβλ + rcω

2
0)

rcrk
(20b)

Upon solving for γ , κR and κI are extracted as follows:

κR = 1

a
|Re[i · lnγ ]| (21a)

κI = 1

a
|Im[i · lnγ ]| (21b)

In the absence of energy dissipation, λ = iω, where ω is a real number representing the wave frequency, and κ is 
obtained directly by solving Eq. (19) for a given value of ω. In the presence of energy dissipation, κ is obtained also directly 
by solving Eq. (19) for waves with a prescribed frequency, ω, i.e., driven waves. However, for free waves, energy dissipation 
results in the frequency being complex, as is the wavenumber, as discussed above. Thus the frequencies take the form 
λ = −ξωr + iωd.

From earlier work on viscous problems, e.g., [40], we understand that damped, free wave propagation produces two band 
diagrams representing the real and imaginary components of the frequency, respectively. Additionally, for locally resonant 
metamaterials, each free waves band diagram can be divided into band segments featuring only propagating waves (i.e., 
purely real wavenumbers) and band segments featuring evanescent waves. In the latter case, there are two possible subseg-
ments: one with complex wavenumbers and one with purely imaginary wavenumbers, both of which take place only within 
a band gap. In a subsegment where the wavenumber is complex, the real part is equal to π/a. Thus a band gap bounded by 
pass bands from the bottom and the top has a subsegment where κR = 0 and a subsegment where κR = π/a, as illustrated 
in Fig. 2b. Following the state-space ω = ω(κ) formulation in Sec. 2.1, the propagating segments are readily obtained [40]. 
However, a complete solution featuring all available imaginary wavenumbers is not possible with this formulation.

We approach this problem also by using Eq. (19). However, a unique combination of the real and imaginary components 
of λ does not exist without constraints. Following from the above discussion, a free wave does not allow any propagating 
component (other than κR = π/a) to exist inside a band gap. Thus a damped free wave at a particular frequency is either 
outside a band gap and is purely propagating or inside a band gap and is evanescent. Based on these characteristics, we 
develop an algorithm to find the (ξ, ωd) pair that satisfies Eq. (19) with κI > 0 which gives us the attenuation constant 
inside band gaps. The propagating portion of the band structure on the other hand is easily determined from Eqs. (17)
and (18). Nevertheless, the algorithm may be readily modified to determine the propagating part of the band structure as 
well. Although this procedure is developed following a quadratic eigenvalue formulation, a similar algorithm based on a 
linear formulation is a subject for future research.

Algorithm for all-complex band structure for free waves:
This algorithm is specific to the evanescent part of the band structure.

1. Set β > 0.
2. Determine λI(κ) = Im[λ(κ)] and λR(κ) = −Re[λ(κ)] following the method in Sec. 2.1 for κ = κR.
3. Define a two-dimensional search space λI–λR corresponding to the gap regions in the λI(κ) plot.
4. Discretize the λI–λR domain into a grid of points (λI,i, λR, j).
5. For each λi, j = −λR, j + iλI,i , calculate κI,i, j following the method in Sec. 2.2.
6. Set a target value for κI (maintaining that κI > 0) and a target κR = 0, π .
7. Of the λi, j that produce κI,i, j within tolerance of the target κI , retain the one or more λi, j that correspond to κR,i, j

closest to the target κR.
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Fig. 2. Undamped band structure of the locally resonant metamaterial of Fig. 1a. (a) Uppermost branch is obtained by a standard ω = ω(κ) formulation as 
well as by the proposed algorithm, thus providing a verification on the accuracy of the algorithm. (b) Illustration of wavenumber subsegments inside the 
band gap. Separated by an anti-resonance frequency, the lower subsegment has κR = π/a and the upper subsegment has κR = 0.

8. Extract ωd,i, j and ξi, j from the retained λi, j using Eqs. (17) and (18), respectively.
9. Repeat steps 6–8 for different target κI > 0 until the evanescent band structure is constructed.

The outcome of the above algorithm is an approximation of the evanescent frequencies and the damping ratios for a 
particular damping intensity. In addition to setting up a finer grid over the λI–λR domain for a better approximation of λi, j , 
a more clear picture of the evanescent band structure obviously results from decreasing the separation between subsequent 
target κI values.

Fig. 3 gives a visual example of an application of the algorithm for a specific set of material parameters (rm = 9, rc = 1, 
rk = 1/10, ω0 = 149.07 rad/s and β/ω0 = 0.2). Shown later in Figs. 4b and 4c are the band-gap ranges used to bound 
the λI–λR domain for this example. In the closed, discretized λR–λI domain of Fig. 3a, we isolate the set of points that 
satisfy, separately, the conditions (targets) κIa = 0.19 and κRa ≈ 0. At the intersection of the κIa = 0.19 and κRa ≈ 0 loci 
is the λi, j value which is retained as an approximate solution. The intersection moves along the κRa ≈ 0 curve for each 
new target κIa, generating new λi, j approximations which ultimately construct the evanescent frequency and damping 
ratio band diagrams over the range of the targeted κI values. More than one physical solution may exist for a given κI . 
To validate the algorithm, we examine the κI values corresponding to the uppermost band gap, which for an undamped 
system is practically unbounded (see Fig. 2a). This upper branch is unique in that it may be obtained by both the state-space 
ω = ω(κ) formulation given in Sec. 2.1 (as demonstrated in Ref. [40]) as well as by the algorithm. Both independent routes 
yield the same κI values for any level of damping intensity.

3. Theory: equivalent mass model

Fig. 1b shows the equivalent lattice model, which we require to exhibit the same dynamic behavior as the original 
nested-mass model. The equivalent lattice model has the same construction as the original metamaterial (i.e., k1 and c1
are the same) except the motion of the internal resonator is considered unobservable—although its influence is accounted 
for by me, the effective mass. The value me varies with frequency, satisfying its own dynamic equilibrium, and concurrently 
matching the complex frequency of the original mass-in-mass metamaterial. This concept was also applied in Ref. [48] where 
periodically distributed internal resonators are separated by a rigid medium and no damping is considered. In contrast, in 
our model elastic springs are used instead of the rigid medium, damping is included, and the frequencies are not necessarily 
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Fig. 3. Demonstration of all-complex band-structure calculation algorithm. (a) For a β �= 0 value, a λI–λR search space is defined corresponding to the gap 
regions seen in λI following Eq. (16) (Steps 1–3). After discretizing the 2D search space, Eq. (21) is used to determine the set of λi, j giving approximations 
(within a preset set tolerance threshold) to the target κIa = 0.19 (red) (Steps 4–6). Of these, the one λi, j that best approximates the target κRa ≈ 0 (blue) 
is taken as the solution from which ωd,i, j and ξi, j are extracted (Steps 7 and 8). (b) Demonstration of the same procedure in the corresponding ξ–ωd
domain.

prescribed. Expectedly, at low frequencies, the value of me converges to the static value, mst = m1 + m2. The terms “static” 
and “nominal” are used to indicate values attained in the long-wavelength limit.

The equation of motion for each degree of freedom in the equivalent lattice model (Fig. 1b) is given by:

meüe + c1(u̇e − u̇L) + k1(ue − uL) = fe (22a)

mLüL + c1(u̇L − u̇e) + k1(uL − ue) = fL (22b)

Assembling Eqs. (22) into a system of equations as in Eq. (2), the mass, damping, and stiffness matrices are defined as 
follows:

M =
[

me 0
0 0

]
(23a)

C = c2

rc

[
1 −1

−1 1

]
(23b)

K = k2

rk

[
1 −1

−1 1

]
(23c)

with the nodal displacements and forces organized as uT = [ue uL] and fT = [ fe fL], respectively. The essential set of 
displacements is simply ū = ue. Assuming a real-valued wavenumber, we apply the Bloch boundary conditions through 
TT = [1 γ ]. This leads to
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(1 + rm)mr

rm
üe + 2(1 − cosκa)

(
β

rc
u̇e + ω2

0

rk
ue

)
= 0 (24)

in which the effective mass has been normalized by the static mass, mr = me/mst, and the previously defined ratios rm, rc, 
rk, β , and ω2

0 have been taken advantage of. Applying the harmonic displacement solution ue = ũeeλt , Eq. (24) gives

(1 + rm)mr

rm
λ2 + 2

(
β

rc
λ + ω2

0

rk

)
(1 − cosκa) = 0 (25)

however, in preparation for later substitution into Eqs. (11b) and (11c), Eq. (25) is algebraically manipulated into the fol-
lowing form:

− (1 + rm)mr(
β
rc

λ + ω2
0

rk

)
rm

λ2 = 2(1 − cosκa) (26)

Now, we tie the dynamic characteristics of the equivalent model to the original metamaterial model by simultaneously 
substituting Eq. (26) into Eqs. (11b) and (11c),

C̄r =
⎡
⎣− (1+rm)mr(

β
rc

λ+ ω2
0

rk

)
rmrc

λ2 + 1 −1

−1 1

⎤
⎦ (27a)

K̄r =
⎡
⎣− (1+rm)mr(

β
rc

λ+ ω2
0

rk

)
rmrk

λ2 + 1 −1

−1 1

⎤
⎦ (27b)

Using these new matrix definitions for the damping and stiffness matrices, we proceed with Bloch state-space treatment. 
This process delivers the following characteristic equation:

[1 − mr(1 + rm)]λ2 + (1 − mr)(1 + rm)(βλ + ω2
0) = 0 (28)

which we subsequently solve for mr(λ):

mr(λ) = 1 − rmλ2

(1 + rm)[λ(β + λ) + ω2
0] (29)

The quantity mr(λ) is evaluated for the damped free waves problem by substituting λ with the values obtained from the 
solution to Eq. (14) and the execution of the algorithm.

4. Numerical examples

In this section, we present a suite of numerical examples to demonstrate all-complex band structures for damped free 
wave propagation. The examples are for the mass-in-mass metamaterial model shown in Fig. 1a, which allows us to examine, 
in a general manner, the role of dissipation in acoustic/elastic metamaterials, both in terms of the dispersion curves and the 
effective mass. The damping intensity is varied to give a broad representation of dissipative effects. The same set of material 
parameters used for the Fig. 3 demonstration is used here as an example for our exposition. These parameters are consistent 
with the relatively high material contrast characteristic of metamaterials and are similar to those selected in Ref. [40] thus 
providing an opportunity for direct comparison with some of the results presented in that publication.

As a consequence of the unit cell’s two-DOF character, in the undamped case (β/ω0 = 0), there are two modes of wave 
propagation comprising an acoustical (lower) branch and an optical (upper) branch. These are shown in the dispersion 
band diagrams in Fig. 4. Separating the two branches, there is a resonance-induced band-gap region where κR = 0, π and 
κI > 0 describing evanescent modes for which waves do not propagate and their amplitudes spatially decay at rates dictated 
by the value of κI . In addition to a closed band-gap region, an unbounded region of evanescent modes exists above the 
optical branch. For compact presentation, we plot the imaginary wavenumbers within the range κIa ∈ [0, π ]. Without an 
algorithm, a band diagram with complex wavenumbers can only be determined for damped waves with prescribed real 
frequencies, that is, κ = κ(λ = 0 + iω) (Fig. 4a). In this scenario, the band gap closes and becomes progressively more 
obscure with greater damping intensity. Alternatively, the complex frequencies of damped free waves can only be directly 
calculated for λ = λ(κ = κR + i0) (Fig. 4b,c). The frequency band gaps for free waves are shown to shift but remain intact 
with increased damping intensity. At extreme damping levels, however, branch overtakings and cut-offs and/or cut-ins are 
observed to take place. Fig. 4 contrasts each of these “either/or” scenarios for various values of β/ω0. A complete band 
structure description featuring generally a complex λ and a complex κ is made possible by the algorithm presented in 
Section 2.2.
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Fig. 4. Dispersion curves. (a) The frequency band diagram for driven waves generated by direct solving of κ = κ(λ) where, for β/ω0 > 0, κ is complex for 
all prescribed λ = iω. The incomplete frequency (b) and damping ratio (c) band diagrams for free waves generated by direct solving of λ = λ(κ) for all 
prescribed κ = κR where κR ∈ [0, π/a].

Now, we apply the algorithm and present the resulting all-complex band structure in Fig. 5. This band structure is, by 
definition, for the damped free waves case. Inspection of the effects of damping can now be done for both the propagating 
and evanescent modes. We note an intense responsiveness from the optical branch and the upper portion of the evanescent 
curves to increases in dissipation, in contrast to the milder, but still significant, effects on the acoustical branch and the 
lower portion of the evanescent curves. As damping increases, the concavity of the optical branch in Fig. 5a changes. This 
points to a damping-induced change in the sign of the wave group velocity from positive (longer wavelengths) to negative 
(shorter wavelengths). In addition, as mentioned above, the more rapid decent of the optical branch compared to the 
acoustical branch closes the band gap and inevitably leads to branch overtaking. Thus the optical and acoustical modes 
exchange order in the frequency spectrum over specific wavenumber values. Similarly in the evanescent modes, damping 
will induce a change in concavity in the upper portion of the κI curves. One interesting aspect of the behavior displayed 
in Fig. 5b is that the damping ratio of the lower, non-propagating portion of the evanescent curves appears to peak at 
approximately κIa ≈ 0.25 regardless of the level of damping.

We turn to the effective mass, which is shown by Eq. (29) to be frequency dependent. Without damping, the effective 
mass approaches its static value in the long wavelength limit (κ, λ → 0), as expected. That is, mr → 1 in the long wavelength 
limit, indicating that me → mst. Several studies have shown the effective mass to become negative over a frequency range
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Fig. 5. All-complex dispersion curves. The complete frequency (a) and damping ratio (b) band diagrams for free waves generated by the proposed algorithm 
for all prescribed κ = κR + iκI where κR, κI ∈ [0, π/a].

in the region of the band gap, e.g., Refs. [46,49]. Here and in Refs. [39,40], we see that viscous damping narrows and 
eventually closes the band gap. Thus the natural question is: how does damping affect the effective mass? This question 
is addressed by using Eq. (29) with the complex frequencies determined by the algorithm in Sec. 2.2. Fig. 6 shows that 
damping acts to narrow the frequency region at which the effective mass is negative. Also shown is that in the presence of 
damping, increasing rm widens this frequency region up to a point after which the effect abruptly reverses and the region 
narrows.

We observe that damping causes the effective mass to separate into real and imaginary components, as presented in 
Figs. 6a and 6b, respectively, and still displays negativity over certain frequency ranges. In Fig. 6a, regardless of the damping 
intensity, the value of the real component of the effective mass converges to that of the static mass as λ → 0. As expected, 
the imaginary component of the effective mass (Fig. 6b) is zero under the same condition. In Figs. 6a and 6b, the dashed 
vertical lines are the asymptotes of, respectively, the real and imaginary components of the normalized effective mass 
obtained by setting the denominator of Eq. (29) equal to zero and solving for the frequency for the chosen value of rm. In 
the undamped case, this marks the bifurcation κRa experiences as the wave frequency crosses the resonance frequency from 
below (in the band gap, κRa = π switches to κRa = 0), but such a correlation cannot be made in the presence of damping. 
As seen in Fig. 5, overdamping causes portions of the band structure to collapse to ωd/ω0 = 0 (even far from the long 
wavelength limit). Consequently, in the frequency dependent mr diagram of Fig. 6a, me converges to mst at one instance of 
ωd = 0 (long wavelength limit) but tends toward another value at a separate instance of ωd/ω0 = 0 (effect of damping). 
We also observe that at high damping, there are no longer any frequencies in which the effective mass is only negative. 
Although the closure of the frequency region of negative effective mass may be difficult to distinguish for some damping 
scenarios in Fig. 6a, the effect is made clear in Fig. 6c.

The metamaterial considered in our model relies on a massive internal resonator to produce a negative effective mass. In 
Fig. 6c, we illustrate the importance of the internal resonator by varying rm, which has the effect of changing the mass of 
m1 while keeping all other material parameters constant. The solid curves in Fig. 6c are produced by setting Eq. (29) equal 
to zero and solving for the complex λ(rm). The frequency at which the effective mass becomes zero marks the frequency 
at which there is a sign change in the value of the effective mass for both the real and imaginary components. The dashed 
curves in Fig. 6c represent the asymptotes and are the result of setting the denominator of Eq. (29) equal to zero and 
solving for the complex λ(rm). These two curves bound the frequency ranges where Re[mr] < 0. When rm � 1, that is, 
when m1 	 m2, the effect of the internal resonator diminishes and the identity of our metamaterial becomes ambiguous 
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Fig. 6. Dynamic effective mass curves. (a) Real component of effective mass; (b) imaginary component of effective mass; (c) zero (solid curves) and 
asymptote (dashed curves) of Eq. (29) enclosing the region of negative effective mass. The dashed vertical lines in (a) and (b) represent the real and 
imaginary asymptotes of Eq. (29), respectively. In (c), the negative frequency range for β/ω0 = 0.2 is highlighted as an example.

as it approaches the dynamic behavior of an ordinary phononic crystal. Consequently, in Fig. 6c, as m2 loses influence, the 
frequency region over which the effective mass is negative shrinks to near nonexistence.

5. Conclusions

In this work, we investigated the notion that damped free waves are in principle governed by a dispersion relation 
in which both the frequency and the wavenumber are generally complex, not only one or the other being complex as 
commonly assumed. An algorithm based on a κ = κ(λ) formulation, guided by first solving the λ = λ(κ = κR + i0) problem, 
was presented for 1D periodic chains. The algorithm was applied to a mass-in-mass unit cell representing a viscously 
damped locally resonant acoustic/elastic metamaterial. This analysis allows one to examine the effects of damping not only 
on the propagating modes of free waves, but also on the evanescent modes. For both mode sets, the effects of damping 
appear in both the frequency and the damping ratio band diagrams. A dynamic effective mass for the damped metamaterial 
model was also calculated and was shown to exhibit negative values over a frequency region near the band gap, as in the 
undamped case. However, for relatively high levels of damping, no frequencies are found in which the effective mass is only 
negative. Future work will explore multi-dimensional systems and the effects of other types of damping, e.g., nonviscous 
damping, in the context of the generalized, all-complex Bloch formulation presented in this paper.
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